SAVITRIBAI PHULE PUNE UNIVERSITY

Progressive Education Society's

Modern College of Arts, Science and Commerce, Ganeshkhind, Pune-411016

B.Sc. Blended Program

(A degree of Savitribai Phule Pune University equivalent to the degree of University of Melbourne)

End Semester Examination: 2023-24

Program: B.Sc. Blended Program (Specific): B.Sc. Blended (Chemistry) Set: A

Class: S.Y.B.Sc. Blended Semester: III

Course code: PHY302

Course name: Quantum mechanics and Thermodynamics

Credits: 3 Time: 2½ hours Maximum marks: 50

Instructions to the candidate:

- All questions are compulsory.
- Figures to the right indicate marks.
- Draw diagrams wherever necessary.
- Use of scientific calculator is allowed.
- Ask for graph paper if needed.

Q.1] Choose the correct option (Solve ANY 10 out of 12)

 $[1 \times 10 = 10M]$

- 1. The frequency below which photoelectric emission is not possible is called -----
 - a. transition frequency
 - b. threshold frequency
 - c. critical frequency
 - d. resonating frequency
- 2. The momentum operator along X-axis is given as -----

a.
$$\hat{p}_x = -i \hbar \frac{\partial}{\partial x}$$

b.
$$\hat{p}_x = i \hbar \frac{\partial}{\partial x}$$

c.
$$\hat{p}_x = -i/\hbar \frac{\partial}{\partial x}$$

d.
$$\hat{p}_x = i / \hbar \frac{\partial}{\partial x}$$

- 3. Square of magnitude of the wave function $|\varphi|^2$ is called ----
 - a. current density
 - b. probability density
 - c. volume density
 - d. surface density

4. What w	will be the eigen value for the operator $\frac{d^2}{dx^2}$ for the eigen function e^{5x}
b. 2	5
c. 8	
d. 1	6
5. The total probability of finding the particle in the entire space must be	
	zero
	unity
	infinity
d.	double
6. The first	st excited state energy of particle in one dimensional infinite potential well is
a.	$\frac{\pi^2 \mathfrak{h}^2}{2ma^2}$
h	$4\pi^2\hbar^2$
b.	$\frac{4\pi^2 \mathfrak{h}^2}{2\mathfrak{m}a^2}$
c.	$\frac{3\pi^2 \mathfrak{h}^2}{2ma^2}$
d.	$\frac{5\pi^2 \mathfrak{h}^2}{2ma^2}$
u.	2ma ²
7. The efficiency of a Carnot engine depends on	
	working substance
b.	design of engine
c.	size of engine
d.	temperatures of source and sink
8. Carnot cycle has maximum efficiency for	
	reversible engine
	irreversible engine
	diesel engine
	petrol engine
9. First law of thermodynamics	
	enables to determine change in internal energy of the system
	does not help to predict whether the system will or not undergo a change
	provides relationship between heat, work and internal energy
	all of the above
10. The mean free path of gas molecules is inversely proportional to a. Square of molecular diameter	

- b. Diameter of molecule
- c. Square root of molecular diameter
- d. None of these
- 11. The ordinary differential equation involves _____ independent variables
 - a. 1
 - b. 2
 - c. 3
 - d. 4
- 12. The distance travelled by a gas molecule between two successive collisions is called_____
 - a. mean path
 - b. free path
 - c. mean free path
 - d. displacement

Q.2] Answer the following in short (ANY 10 out of 12)

 $[2 \times 10 = 20M]$

- 1. Write Schrödinger's time dependent equation in 1 and 3 dimensions.
- 2. State Kirchhoff's law of radiation.
- 3. State equation of continuity.
- 4. What is momentum of gamma radiation having a wavelength 2A⁰

(Given-
$$h = 6.625 \times 10^{-34} \text{ j-sec}$$
)

5. Calculate the wavelength associated with a particle moving of momentum

$$6.625 \times 10^{-3} \text{ kg-m/sec}$$
 (Given- h = $6.625 \times 10^{-34} \text{ j-sec}$)

- 6. Define eigen value and eigen function
- 7. Explain the term Homogeneity of differential equation with an example.
- 8. What do you understand by mean free path of molecules of gas?
- 9. State order and degree of following differential equation $\frac{d^4y}{dx^4} \sqrt{y^2 5} = 0$.
- 10. What is heat engine? Draw schematic diagram for heat engine.
- 11. If the compression ratio for Otto engine is 9 and ratio of principal specific heats Cp/Cv is 1.4, find the efficiency of the engine.
- 12. The efficiency of Otto engine is 50%. If value of γ for the working substance is 1.5, find the compression ratio.

Q.3. Answer in brief (ANY 4 out of 6)

 $[4 \times 5 = 20M]$

- 1. Explain the difference between classical physics and quantum physics
- 2. Define expectation value. Write mathematical expression for position and momentum.
- 3. Normalize the wave function of the free particle in the range $-\infty$ to $+\infty$ is given by $\varphi(X) = A e^{-x^2/2a^2}$
- 4. What is transport phenomenon? Explain in brief viscosity, conductivity and self-diffusion on the basis of kinetic theory of gases.
- 5. Explain Otto Cycle in brief with Indicator diagram.
- 6. Carnot's engine, whose low temperature reservoir is at 10°C, has an efficiency of 50%. It is desired to increase the efficiency to 70%. By how many degrees should the temperature of the high temperature reservoir be increased?

-----X-----